

Sponsor & Advisor

Florida Agriculture & Mechanical University and Florida State University

Dr. Carl Moore Jr. Associate Professor

Meet Team 515

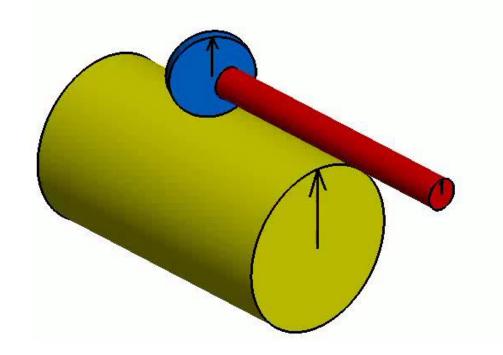
Kemani Harris Dynamics Engineer

Aaron Havener Controls Engineer

Jacob Hernandez Design Engineer

Aliya Hutley Test Engineer & POC

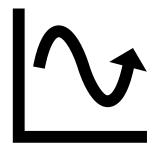
Cade Watson Materials Engineer



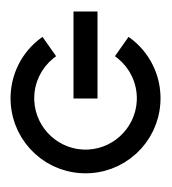
Objective

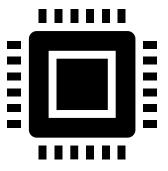
The objective of this project is to enhance the education of haptic robotics by creating a device using continuously variable transmissions (CVTs). The device is intended to utilize computer control and move through various positions to produce accurate output motion.

Background



What makes this a CVT?

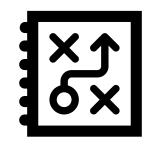

What make this device a CVT is that it rely on the change of the steering angle to determine the change variability translational motion.


Assumptions

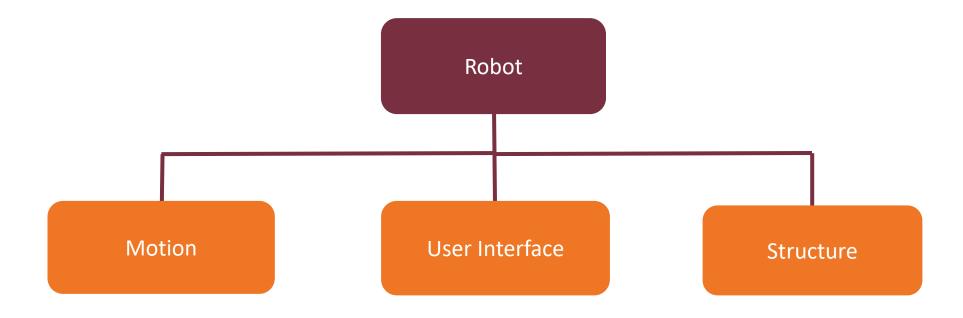
Threedimensional motion is not required.


Common sources of power are accessible.

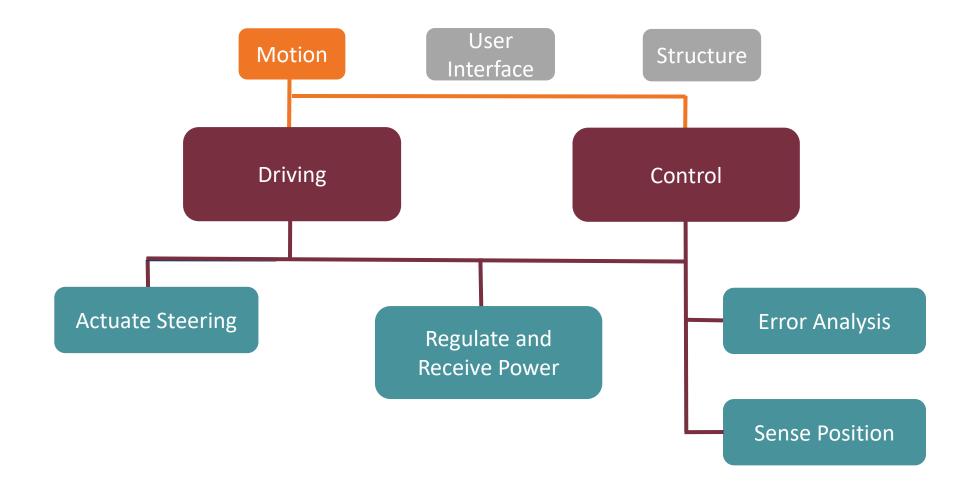
Existing motor and control hardware is allowed.


Understanding Functionality

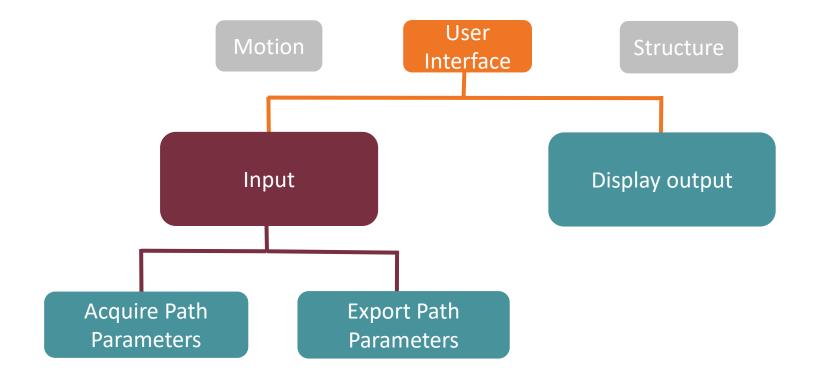
A target high school audience


Use in multiple locations

Customizable, welldisplayed output that transitions continuously from an input to an output



Functional Decomposition



Critical Functions

Critical Functions

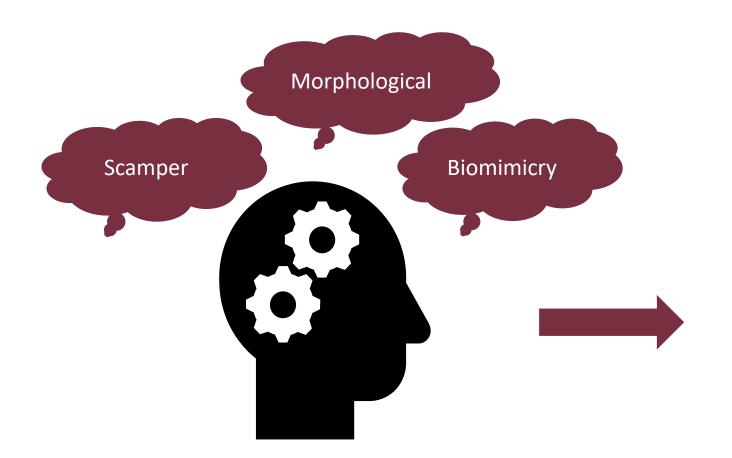
Target and Metrics

Translation Measurment: ± 0.05in

Output error: ± 0.1in

Friction Coefficient: 0.215

Display area: 8.5in x 11in



Desired completion time: 60sec

Time Delay: 0.5-1 sec

Concept Generation

Medium Fidelity

Projectile Trajectory Game(Button-Controlled)

Racecar Game(Potentiometer)

Projectile Trajectory Game PID Control

Roller Coaster Potential Energy Study

Gridded Paper Curve Plotting

High Fidelity

Optimal Path Simulation for Racecar Game

Long Exposure Drawing

Projectile Trajectory

Binary Pairwise Comparison

Customer Requirements

Portability

Lifespan

Control Method

Device Interaction

Device size

Continuous Movement

Duration

Modularity

Device Precision

Output Parameters

Concept Selection House of Quality

Customer Requirements

Engineering Characteristics

Position Accuracy

Actuation Capability

Structure Integrity

Display Size

Device Size

User Response Time

Power

Neight

Pugh Chart: 1st Iteration

2024 REU Large Scale CVT Device

Racecar Optimal
Path 1

Long Exposure Drawing
Guessing Game

Projectile
Trajectory Game
1

Waveform Interaction Study

Projectile
Trajectory Game

Racecar Optimal Path 2

Projectile
Trajectory Game
3

Pugh Chart: 1st Iteration

2024 REU Large Scale CVT Device

Racecar Optimal
Path 1

Long Exposure Drawing
Guessing Game

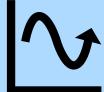
Projectile
Trajectory Game

Waveform Interaction Study

Projectile
Trajectory Game
2

Racecar Optimal Path 2

Projectile
Trajectory Game
3



Pugh Chart: 2nd Iteration

Waveform Interaction Study

Racecar Optimal Path 1

Long Exposure

Drawing

Guessing Game

Projectile
Trajectory Game

Projectile
Trajectory Game

Pugh Chart: 2nd Iteration

Waveform Interaction Study

Racecar Optimal Path 1

Long Exposure
Drawing
Guessing Game

Projectile
Trajectory Game
2

Projectile
Trajectory Game
3

Pugh Chart: 3rd Iteration

Long Exposure
Drawing
Guessing Game

Racecar Optimal Path 1

Projectile Trajectory Game 2

Pugh Chart: 3rd Iteration

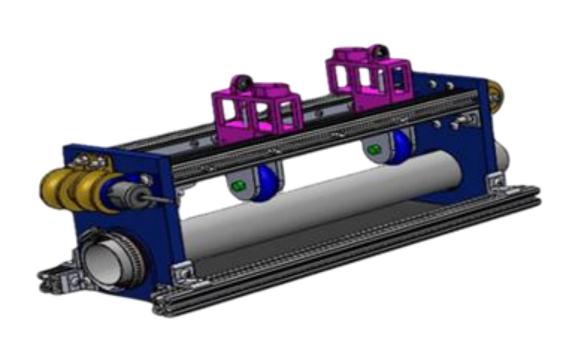
Long Exposure
Drawing
Guessing Game

Racecar Optimal Path 1

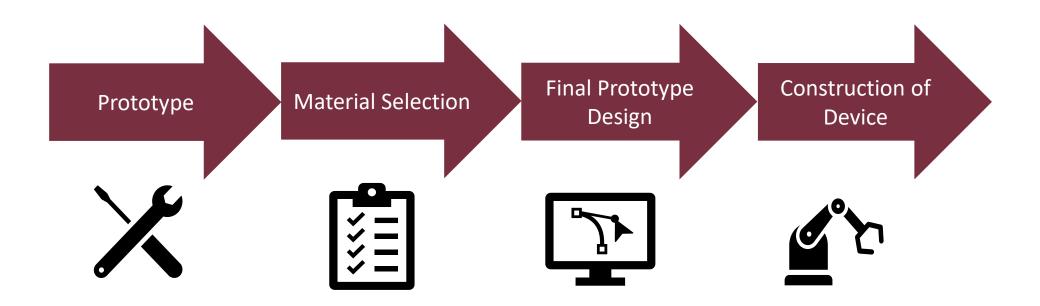
Projectile Trajectory Game 2

Concept Selection Analytical Hierarchy Process

Alternative Value Matrix					
	Alt. Value				
Concept 2	0.489				
Concept 1	0.181				
Concept 3	0.331				
Sum	1				



Concept Selection Final Selection


Long Exposure Drawing Guessing Game

Future and Beyond

Back Up Slides

The Future and Beyond

Pugh Chart: 1st Iteration

Pugh Chart 1										
Engineering Characeristic	2024 REU Large-scale CVT	Γ Concept								
	Device	1	2	3	4	5	6	7	8	
User Response Time	Datum	+	+	+	-	+	+	+	+	
Device Size		+	+	+	+	+	+	+	+	
Display Size		-	+	-	-	-	+	-	+	
Position Accuracy		+	+	+	+	+	-	+	-	
Actuation Capability		+	-	+	S	S	-	+	-	
Structural Integrity		S	+	+	S	-	-	+	S	
Weight		-	-	-	S	-	-	-	S	
Power		-	-	S	S	-	-	S	S	
Total Pluses		4	5	5	2	3	3	5	3	
Total	Minuses	3	3	2	2	4	5	2	2	

Font Check

- This is 10-point
- This is 15–point Times
- This is 20–point
- This is 25-point
- This is 30–point
- This is 35—point
- This is 40–point
- •This is 50—point
- •This is 60—point

